Coulomb excitation of 222Rn

Phys. Rev. C

105
024323
(2022)
Spagnoletti, P.; Butler, P. A.; Gaffney, L. P.; Abrahams, K.; Bowry, M.; Cederkäll, J.; Chupp, T.; de Angelis, G.; De Witte, H.; Garrett, P. E.; Goldkuhle, A.; Henrich, C.; Illana, A.; Johnston, K.; Joss, D. T.; Keatings, J. M.; Kelly, N. A.; Komorowska, M.; Konki, J.; Kröll, T.; Lozano, M.; Singh, B. S. Nara; O'Donnell, D.; Ojala, J.; Page, R. D.; Pedersen, L. G.; Raison, C.; Reiter, P.; Rodriguez, J. A.; Rosiak, D.; Rothe, S.; Scheck, M.; Seidlitz, M.; Shneidman, T. M.; Siebeck, B.; Sinclair, J.; Smith, J. F.; Stryjczyk, M.; Van Duppen, P.; Viñals, S.; Virtanen, V.; Wrzosek-Lipska, K.; Warr, N.; Zielińska, M.

The nature of quadrupole and octupole collectivity in  
222
 Rn 
  was investigated by determining the electric-quadrupole (𝐸⁢2) and octupole (𝐸⁢3) matrix elements using subbarrier, multistep Coulomb excitation. The radioactive  
222
 Rn 
  beam, accelerated to 4.23 MeV/u, was provided by the HIE-ISOLDE facility at CERN. Data were collected in the Miniball 𝛾-ray spectrometer following the bombardment of two targets,  
120
 Sn 
  and  
60
 Ni 
 . Transition 𝐸⁢2 matrix elements within the ground-state and octupole bands were measured up to 10⁢ℏ and the results were consistent with a constant intrinsic electric-quadrupole moment, 518⁢(11)⁢𝑒fm2. The values of the intrinsic electric-octupole moment for the 0+→3− and 2+→5− transitions were found to be respectively 2360+300
−210𝑒fm3 and 2300+300
−500𝑒fm3 while a smaller value, 1200+500
−900𝑒fm3, was found for the 2+→1− transition. In addition, four excited non-yrast states were identified in this work via 𝛾−𝛾 coincidences.

DOI
10.1103/PhysRevC.105.024323
Published on
nwarr